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Effects of the second harmonic on the secondary Bjerknes force

Alexander A. Doinikov
Institute of Nuclear Problems, Byelorussian State University, 11 Bobruiskaya Street, Minsk 220050, Belarus

~Received 21 October 1998!

The time-averaged interaction force exerted by an acoustic field between two gas bubbles, known as the
secondary Bjerknes force, is derived with an accuracy up to a component induced by the second harmonic of
bubble oscillations. The surrounding medium is assumed to be an incompressible viscous liquid and the
distance between the bubbles much larger than their radii. It is shown that the second-harmonic component of
the interaction force in many cases prevents the bubbles from coalescing, causing them either to repel each
other or to form a bound pair with some stable separation. This can occur providing the imposed field is strong
enough so that the second-harmonic force component is comparable to the ‘‘linear’’~produced by the linear
oscillations of the bubbles! interaction force. The obtained results are of interest in understanding collective
bubble phenomena in strong acoustic fields, such as cavitation streamer formation.@S1063-651X~99!11003-1#

PACS number~s!: 47.55.Bx, 47.55.Dz, 47.55.Kf, 43.25.1y
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I. INTRODUCTION

The secondary Bjerknes force is a well-known effect
nonlinear acoustics. It is a time-averaged mutual interac
force of two gas bubbles in an acoustically driven liqu
This force constitutes an important component of ma
acoustic phenomena and applications such as acoustic
tation, ultrasonic degassing, multibubble sonoluminesce
and medical ultrasonics@1–5#. It is named after C.A.
Bjerknes and his son V.F.K. Bjerknes@6#, who were the first
to investigate experimentally and theoretically this effe
They derived the following expression for the force:

FB5
2puAu2v2R10R20

rL2~v1
22v2!~v2

22v2!
, ~1!

whereA is the complex pressure amplitude of the incide
acoustic field,v is the angular driving frequency,R10 and
R20 are the equilibrium radii of the bubbles,r is the equilib-
rium density of the liquid,L is the distance between th
equilibrium centers of the bubbles,v1 andv2 are the mono-
pole resonance frequencies of the bubbles,FB.0 corre-
sponds to the mutual attraction of the bubbles, andFB,0 to
the mutual repulsion. It is seen from Eq.~1! that the repul-
sion occurs whenv lies betweenv1 andv2 . Otherwise the
bubbles are attracted to each other. The Bjerknes theo
based on the following assumptions:~i! The surrounding me-
dium is an ideal incompressible fluid;~ii ! the gas within the
bubbles obeys the adiabatic law;~iii ! R10,R20!L so that the
shape deviations of the bubbles from sphericity and the s
tered waves of higher order than the primary ones can
neglected;~iv! uAu is small enough so that the bubbles osc
late linearly with the driving frequency alone. When the
conditions are met, the Bjerknes theory is in agreement w
experiments@7,8#. If, however, this is not the case, then ce
tain effects are observed that cannot be explained by u
Eq. ~1!. One such effect is the formation of stable bubb
clusters that were first reported by Kobelevet al. @9# and
observed more recently by Marstonet al. @10#. The clusters
consisted of several bubbles noticeably larger than reson
PRE 591063-651X/99/59~3!/3016~6!/$15.00
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size. They neither coagulated nor broke down into individ
bubbles as long as the sound field was on. A very import
point is that the sound field used in@9# was rather weak: The
ratio of the driving pressure amplitude to the hydrosta
pressure did not exceed 0.035.~In @10#, stronger fields were
applied.! This fact suggests that the observed clusters are
associated with nonlinear bubble oscillations. The key to t
problem was given by Zabolotskaya@11#. She has shown
that Eq.~1! fails because of ignoring radiation coupling o
the two bubbles, i.e., the influence of the bubbles’ scatte
fields on each other’s pulsations. Allowing for this couplin
yields a refined formula for the interaction force that pr
vides an insight into the nature of the bubble clusters. A
cording to that formula, two bubbles, when approaching e
other, behave as if their resonance frequenciesv1 and v2
were increased. Therefore, if both bubbles are driven ab
resonance and one~or both! of their resonance frequencies
close enough tov, the interaction force may change from
attraction to repulsion as the bubbles are coming close
each other. This result was confirmed~and extended! later by
more accurate calculations allowing for multiple scatteri
of sound between the bubbles and their shape oscillat
@12#. An extensive numerical investigation of the relativ
motion of two bubbles in stronger sound fields~with relative
driving pressure amplitudes of 0.2–0.3! has been conducte
in @13#. It revealed that the mechanism proposed by Za
lotskaya works in such fields, too, which is confirmed by t
experiments reported in@10#.

When the wavelength of sound is comparable to sep
tion distances between bubbles, the compressibility of
surrounding liquid is no longer negligible. Its effect on th
secondary Bjerknes force has been examined in@14#, keep-
ing up all the other limitations of the Bjerknes theory. It h
been found that the compressibility of the liquid gives rise
long-range terms in the interaction force that are invers
proportional toL instead ofL2. Those terms can make th
two bubbles form a stable bound pair with a spacing of
order of the wavelength of sound. This prediction has
been borne out by experiment yet.

Bubbles are able to form stable structures not only in
cases considered above. It is well known from experime
3016 ©1999 The American Physical Society
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PRE 59 3017EFFECTS OF THE SECOND HARMONIC ON THE . . .
that in strong acoustic fields they group themselves i
branched filamentary structures named ‘‘acoustic streame
@15#. These are formed mainly from bubbles smaller th
resonance size, although according to the Bjerknes
Zabolotskaya theories bubbles of this sort should alw
coalesce. Oguz and Prosperetti@16# have investigated nu
merically the interaction of two bubbles, maintaining all t
restrictions of the Bjerknes theory but assuming that
bubbles oscillate slightly nonlinearly. They have found th
nonlinear effects can change the sign of the interaction fo
with respect to the predictions of Eq.~1!. In particular, re-
pulsion may also appear even if both of the bubbles
driven below their fundamental resonance frequencies. It
observed that the repulsive force emerged if 2v lay between
v1 andv2 and the forcing was high enough, on the order
0.5 bar at a static pressure of 1 bar. For lower driving pr
sures and other relations between the frequencies, the e
disappeared. Oguz and Prosperetti conjectured that it
caused by a strong component at twice the driving freque
developing in bubble pulsations due to the strong forci
Mettin et al. @17# have examined even stronger sound fiel
with driving pressure amplitudes exceeding 1 bar. They
lowed for radiation coupling of two bubbles but assumed t
the bubbles were far enough apart and therefore rema
spherical at all times. The resonance frequencies of b
bubbles were chosen to be well above the driving frequen
It was found that for some bubble pairs a mutual appro
changed the interaction force from attraction to repulsi
resulting in a stable separation distance. Obviously, asv1
and v2 were far above 2v, a physical mechanism of thi
process is other than that proposed in@16#. It has been shown
that the changeover of the force in this case is likely to
associated with a nonlinear resonancelike response
bubbles, occurring in very strong sound fields if the equil
rium bubble radius is larger~but not much! than a certain
value ~dynamical Blake threshold@18#! which is typically
equal to a few microns.

From the above overview it can be seen that the phys
mechanisms responsible for the bubble clusters in w
acoustic fields are clear enough while the nature of
bubble structures occurring in medium- and high-intens
fields strongly calls for further investigation. This pap
seeks to gain some insight into how the radiation interbub
forces are affected by nonlinear oscillations. To this end
Sec. I an expression is derived for the Bjerknes force
tween two bubbles, including the component produced
the second harmonic of the bubble oscillations. The obtai
equations are then discussed in Sec. II.

II. THEORY

Let two gas bubbles be in a liquid driven by a sound wa
field. Suppose that the wavelength of sound is much lar
than the distanceL between the bubbles and thatL is large
compared with the equilibrium radiiR10 and R20 of the
bubbles. Then both the compressibility of the liquid and
shape deviations of the bubbles from sphericity can be
glected. The viscosity of the liquid is taken into account b
acoustic streaming around the bubbles is assumed to be
ligible. Under these conditions, equations of the radial p
sations of two interacting bubbles are given by@17#
o
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R1R̈11
3

2
Ṙ1

22
p10

r S R10

R1
D 3g

1
2s

rR1
1

4nṘ1

R1
1

1

L

d

dt
~Ṙ2R2

2!

5
pv12p02pI

r
, ~2!

R2R̈21
3

2
Ṙ2

22
p20

r S R20

R2
D 3g

1
2s

rR2
1

4nṘ2

R2
1

1

L

d

dt
~Ṙ1R1

2!

5
pv22p02pI

r
, ~3!

whereRj (t) is the instantaneous radius of thej th bubble (j
51,2), the dot denotes the time derivative,pj 0 is the equi-
librium gas pressure inside thej th bubble,g is the polytropic
exponent of the gas,s is the surface tension,n is the kine-
matic viscosity of the liquid,pv j is the vapor pressure insid
the j th bubble,p0 is the static pressure in the liquid, andpI
is the driving acoustic pressure.

To calculate the interaction force up to the secon
harmonic component, Eqs.~2! and~3! should be solved with
accuracy up to the second harmonic. For this purpose,Rj (t)
is represented as

Rj~ t !5Rj 01xj
~1!~vt !1xj

~2!~2vt !, ~4!

wherexj
(1)(vt) is the linear change of thej th bubble’s ra-

dius, proportional to the driving pressure amplitudeA, and
xj

(2)(2vt) is the second-order change proportional touAu2

and involving a time-varying~with twice the driving fre-
quency! term and a time-constant term:

xj
~2!~2vt !5 x̃ j

~2!~2vt !1 x̄ j
~2! . ~5!

A. Linear equations

To find xj
(1)(vt), we substitute Eq.~4! into Eqs.~2! and

~3! and retain only the linear terms:

ẍ1
~1!1vd1ẋ1

~1!1v1
2x1

~1!1
R20

2

R10L
ẍ2

~1!52
pI

rR10
, ~6!

ẍ2
~1!1vd2ẋ2

~1!1v2
2x2

~1!1
R10

2

R20L
ẍ1

~1!52
pI

rR20
. ~7!

Here v j and d j are, respectively, the monopole resonan
frequency and the dimensionless viscous damping cons
of the j th bubble, given by

v j5
1

Rj 0
S 3g pj 0

r
2

2s

rRj 0
D 1/2

, ~8!

d j5
4n

vRj 0
2

. ~9!

Solutions to Eqs.~6! and~7! are more conveniently sought i
the complex form. The real quantitiespI andxj

(1)(vt) can be
represented as

pI5Im~PI ! and xj
~1!~vt !5Im~Xj

~1!!, ~10!
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where Im denotes ‘‘the imaginary part of’’ and the compl
quantitiesPI andXj

(1) are given by

PI5A exp~ ivt !, ~11!

Xj
~1!5Aj

~1! exp~ ivt !. ~12!

Substitution of Eqs.~11! and~12! into Eqs.~6! and~7! yields

~v1
22v21 iv2d1!A1

~1!2
R20

R10
v2j2A2

~1!52
A

rR10
, ~13!

~v2
22v21 iv2d2!A2

~1!2
R10

R20
v2j1A1

~1!52
A

rR20
, ~14!

wherej j5Rj 0 /L. Solving these equations for the unknow
A1

(1) andA2
(1) , one obtains

A1
~1!52

A

rR10D1
~j2v21v2

22v21 iv2d2!, ~15!

A2
~1!52

A

rR20D1
~j1v21v1

22v21 iv2d1!, ~16!

where

D15~v1
22v21 iv2d1!~v2

22v21 iv2d2!2j1j2v4.
~17!

B. Equations for xj
„2…

„2vt…

Substituting Eq.~4! into Eqs. ~2! and ~3! and retaining
only the second-order terms, one has

ẍ1
~2!1vd1ẋ1

~2!1v1
2x1

~2!1
R20

R10
j2ẍ2

~2!

5
1

R10
FV1

2~x1
~1!!21vd1x1

~1!ẋ1
~1!2x1

~1!ẍ1
~1!2

3

2
~ ẋ1

~1!!2

22j2

d

dt
~x2

~1!ẋ2
~1!!, ~18!

ẍ2
~2!1vd2ẋ2

~2!1v2
2x2

~2!1
R10

R20
j1 ẍ1

~2!

5
1

R20
FV2

2~x2
~1!!21vd2x2

~1!ẋ2
~1!2x2

~1!ẍ2
~1!2

3

2
~ ẋ2

~1!!2

22j1

d

dt
~x1

~1!ẋ1
~1!!, ~19!

where

V j
25

1

rRj 0
2 F3

2
g~3g11!pj 02

2s

Rj 0
G . ~20!

Let us again take advantage of the complex representa
Writing the real quantitiesxj

(1)(vt) and x̃ j
(2)(2vt) as
n.

xj
~1!~vt !5

i

2
~Xj

~1!* 2Xj
~1!! ~21!

@see Eqs.~10!; the asterisk denotes the complex conjuga#
and

x̃ j
~2!~2vt !5Im~Xj

~2!!, ~22!

one finds from Eqs.~18! and ~19!

x̄ j
~2!5

2V j
22v2

4Rj 0v j
2

uAj
~1!u2, ~23!

Ẍ1
~2!1vd1Ẋ1

~2!1v1
2X1

~2!1
R20

R10
j2 Ẍ2

~2!

5
i

2R10
FX1

~1!Ẍ1
~1!1

3

2
~Ẋ1

~1!!22V1
2~X1

~1!!2

2vd1X1
~1!Ẋ1

~1!12j2

d

dt
~X2

~1!Ẋ2
~1!!G , ~24!

Ẍ2
~2!1vd2Ẋ2

~2!1v2
2X2

~2!1
R10

R20
j1Ẍ1

~2!

5
i

2R20
FX2

~1!Ẍ2
~1!1

3

2
~Ẋ2

~1!!22V2
2~X2

~1!!2

2vd2X2
~1!Ẋ2

~1!12j1

d

dt
~X1

~1!Ẋ1
~1!!G . ~25!

Equation~23! gives the constant term ofxj
(2)(2vt). It is not

required for calculating the interaction force and presen
here only for completeness of exposition. The other t
equations are complex equations for the time-varying term
xj

(2)(2vt). Upon substitution of

Xj
~2!5Aj

~2! exp~2ivt !, ~26!

they yield

~v1
224v212iv2d1!A1

~2!2
4R20v

2

R10
j2A2

~2!

52
i

2R10
F S V1

21
5

2
v21 iv2d1D ~A1

~1!!2

14v2j2~A2
~1!!2G , ~27!

~v2
224v212iv2d2!A2

~2!2
4R10v

2

R20
j1A1

~2!

52
i

2R20
F S V2

21
5

2
v21 iv2d2D ~A2

~1!!2

14v2j1~A1
~1!!2G . ~28!

Solving Eqs.~27! and~28! for the unknownsA1
(2) andA2

(2) ,
one obtains
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A1
~2!52

i

2R10D2
F S V1

21
5

2
v21 iv2d1D ~v2

224v2

12iv2d2!~A1
~1!!2

14v2j2S v2
21V2

22
3

2
v213iv2d2D ~A2

~1!!2G ,
~29!

A2
~2!52

i

2R20D2
F S V2

21
5

2
v21 iv2d2D ~v1

224v2

12iv2d1!~A2
~1!!214v2j1

3S v1
21V1

22
3

2
v213iv2d1D ~A1

~1!!2G , ~30!

where

D25~v1
224v212iv2d1!~v2

224v212iv2d2!

216v4j1j2 . ~31!

So, Eqs.~4!, ~5!, ~10!, ~12!, ~15!–~17!, ~22!, ~23!, ~26!,
and ~29!–~31! give us the instantaneous radii of the two i
teracting bubbles up to the second harmonic. We can n
proceed to calculate the interaction force itself.

C. Interaction force

Since the interaction force on one bubble is equal a
opposite to that on the other bubble, it is sufficient to cal
late one of them, say, the force on bubble 1. This is given
@17#

F152^v1“p2&, ~32!

where^ & denotes the time average,v154pR1
3/3 is the in-

stantaneous volume of bubble 1, and“p2 is the pressure
gradient generated by bubble 2 at the equilibrium cente
bubble 1, given by

“p25
r

L2

d

dt
~R2

2Ṙ2!e12, ~33!

in which e12 is the unit vector directed from the equilibrium
center of bubble 1 to that of bubble 2. Settingv15Im(V1)
and p25Im(P2), whereV1 and P2 are the respective com
plex volume and pressure, Eq.~32! can be rewritten as

F152 1
2 Re~Ṽ1*“P2!, ~34!

where Re denotes ‘‘the real part of’’ andṼ1 is the time-
varying part ofV1 . With accuracy up to the second-ord
terms,Ṽ1 and“P2 are given by

Ṽ152pR10@2R10X1
~1!12R10X1

~2!2 i ~X1
~1!!2#, ~35!

“P25
rR20

L2

d

dt
~R20Ẋ2

~1!1R20Ẋ2
~2!2 iX2

~1!Ẋ2
~1!!e12.

~36!
w

d
-
y

of

Substituting these equations into Eq.~34! and using Eqs.~12!
and ~26!, one finally obtains

F15~F1
~1!1F1

~2!!e12, ~37!

where

F1
~1!52prv2R10R20j1j2 Re~A1

~1!* A2
~1!!, ~38!

F1
~2!52prv2j1j2 Re@4R10R20A1

~2!* A2
~2!1~A1

~1!* !2~A2
~1!!2

12iR10A1
~2!~A2

~1!* !212iR20A2
~2!~A1

~1!* !2#. ~39!

Equations~38! and~39! are, respectively, the ‘‘linear’’~pro-
duced by the linear oscillations! and the second-harmoni
components of the radiation interaction force acting
bubble 1.

III. DISCUSSION

Substituting Eqs.~15! and ~16! for A1
(1) and A2

(1) , one
obtains the ‘‘linear’’ component, Eq.~38!, in an explicit
form:

F1
~1!5

2puAu2v2R10R20

rL2uD1u2

3@~j1v21v1
22v2!~j2v21v2

22v2!1v4d1d2#.

~40!

The similar equation was first obtained by Zabolotska
@11#. It improves the Bjerknes formula, Eq.~1!, by allowing
for the dissipation of energy and radiation coupling of t
bubbles. It is seen from Eq.~40! that due to the radiation
coupling between the bubbles the ‘‘linear’’ force can chan
its sign as the bubbles approach each other and the ch
comes about in such a manner as if their resonance freq
cies were increased with reducing the separation distance
has already been mentioned in the Introduction, this expla
the way bubbles driven above resonance form stable clus
in weak acoustic fields@9,10,12#.

However, our prime interest here is the second-harmo
component of the interaction force. Substitution of Eqs.~15!,
~16!, ~29!, and~30! into Eq. ~39! yields

F1
~2!5

2puAu4v2

r3R10R20L
2uD1u4uD2u2

Re$T1T2* G1G2* H1H2* %,

~41!

where

Tj5~v j
22v21j jv

21 iv2d j !
2, ~42!

Gj5v j
21V j

22 3
2 v223iv2d j , ~43!

H j5v j
224v214v2Bjj j12iv2d j , ~44!

Bj5S R32 j 0

Rj 0
D 2 T32 jGj*

TjG32 j*
. ~45!
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Allowing for dissipation makes the analysis of Eq.~41! too difficult. To avoid numerical computations and yet to reveal
main features of the second-harmonic force component, we will setd1 ,d250. As a result, Eq.~41! is simplified to

F1
~2!5

2puAu2v2~v1
22v21j1v2!2~v2

22v21j2v2!2M1M2N1N2

r3L2R10R20~v1
22v2!4~v2

22v2!4~v1
224v2!2~v2

224v2!2
, ~46!
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M j5v j
224v214v2bjj j , ~47!

Nj5v j
21V j

22
3

2
v2, ~48!

b15
R20

2 ~v2
22v2!2N1

R10
2 ~v1

22v2!2N2

, b251/b1 . ~49!

It is seen that the sign ofF1
(2) , which is of special interest to

us, is determined by the factorsM1 , M2 , N1 , andN2 .
Let us first consider the case where both bubbles

driven below the main resonance (v,v1 ,v2), the case of
‘‘small bubbles.’’ For such bubblesN1 ,N2.0 as V j.v j

@cf. Eqs.~8! and~20!# and hencev j
21V j

2.1.5v2. The sign
of M1M2 depends on the relation betweenv1 ,v2 , and 2v.
If 2v lies betweenv1 andv2 , thenF1

(2) is a repulsive force
which counteracts the attractive ‘‘linear’’ force. As a resu
for high enough driving pressures the total force can beco
repulsive as well and thus prevent the bubbles from coal
ing. Equation~46! also shows that the sign ofF1

(2) depends
on the distanceL between the bubbles. In the case cons
ered, it varies in such a way as if the monopole resona
frequencies of both bubbles increased asL decreases. It fol-
lows that, even if both resonance frequencies are initia
below 2v, the forceF1

(2) can change from attraction to re
pulsion as the bubbles approach each other provided on~or
re

e
c-

-
ce

y

both! of their resonance frequencies is close enough to 2v.
This effect suggests one of the possible physical mechan
that give rise to stable structures~such as acoustic streamer!
formed by ‘‘small’’ bubbles in strong fields.

Consider the next example. Assume that one of
bubbles~say, bubble 1! is big so thatv1

21V1
2,1.5v2, while

the second bubble is small so thatv2.v. For this case the
‘‘linear’’ force F1

(1) is repulsive.M1 ,N1,0,N2.0, and the
sign ofM2 is determined by the ratio betweenv2 and 2v. If
v2,2v, thenM2,0 and henceF1

(2) hinders coalescence a
well. For v2.2v, F1

(2) is an attractive force counteractin
F1

(1) . Note also that in the case consideredb1 ,b2,0. This
means that forv2 close to 2v, the sign ofF1

(2) varies in such
a way as if the resonance frequency of bubble 2 were lo
ered with decreasingL. In particular, ifv2 is slightly below
2v, then the sign ofF1

(2) may change from repulsion to
attraction as the bubbles are moving apart. As a result,F1

(2)

will begin to counteract the repulsion caused byF1
(1) . This

may lead to a stable separation between the bubbles i
course, the imposed field is strong enough.

Consider one more example. Let both bubbles be dri
above the main resonance (v1 ,v2,v) provided thatN1

,0 andN2.0. It is easy to see that in this caseF1
(1) andF1

(2)

again counteract each other (F1
(1).0,F1

(2),0). Hence the
sign of the total force depends on their relative magnitud

So far we have neglected the dissipation terms, assum
them to be small. Even so, however, they can play a rol
the bubbles are near resonances. To estimate it, conside
most interesting case wherev1 and v2 are close to 2v so
that v j

224v25v2e j with e j!1. For this case, Eq.~41!
gives
r

F1
~2!'

puAu4~512V1
2/v2!~512V2

2/v2!@~e114B1j1!~e214B2j2!14d1d2#

162r3v6R10R20L
2~e1

214d1
2!~e2

214d2
2!

. ~50!

As is seen from Eq.~50!, dissipation increases the mismatch between the natural frequencies of the bubbles needed foF1
(2) to

be a repulsive force.
We can also use Eq.~50! in order to estimate the threshold pressure at whichF1

(2) becomes comparable toF1
(1) since it is

reasonable to assume that forv1 andv2 close to 2v this threshold is minimum. By comparing Eq.~50! with Eq. ~40!, one
finds

uAu th56rv2R10R20F ~e1
214d1

2!~e2
214d2

2!

~512V1
2/v2!~512V2

2/v2!u~e114B1j1!~e214B2j2!14d1d2uG
1/2

. ~51!
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As an example, let us consider two air bubbles in wa
borrowing data from@16#: R1050.1 mm,R2050.09 mm,L
55 mm, v50.51v1 ( f 5v/2p'16.8 kHz), and p0
51 bar. For such bubbles, the main contribution to damp
comes from heat and radiation losses. Therefore, it is rea
able to substitute for the viscous damping constantsd1 and
d2 in Eq. ~51! the total damping constants allowing for a
three kinds of losses. In this case, Eq.~51! gives uAu th
'0.31 bar. This value is quite close to 0.5 bar obtained
@16# on the basis of a different~numerical! approach for the
same parameters. However, it should not be expected
Eq. ~51! will be in good agreement with experimental value
as the present theory is based upon the assumption of w
field such thatuxj

(2)u!uxj
(1)u!Rj 0 . For this reason, the mos

that can be anticipated from Eq.~51! is apparently the orde
of magnitude of the threshold pressure.

The above discussion shows that in strong acoustic fi
the radiation interaction between bubbles gets much m
,

,

.

r,

g
n-

n

at
,
ak

s
re

intricate. As a consequence, bubble coalescence is by
means the most probable event, which is just confirmed
experiments@15#. Of course, the results of the present stu
are of qualitative rather than quantitative concern since t
are based on the assumption of weak field. Neverthel
they give some~initial! insight as to how nonlinear oscilla
tions influence the radiation interbubble forces. From t
standpoint, the present results are of immediate interes
understanding collective bubble phenomena in strong ac
tic fields such as cavitation streamers, ultrasonic degass
multibubble sonoluminescence, etc. They can also be hel
in the interpretation of more quantitatively correct numeric
results.
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