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Effects of the second harmonic on the secondary Bjerknes force
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The time-averaged interaction force exerted by an acoustic field between two gas bubbles, known as the
secondary Bjerknes force, is derived with an accuracy up to a component induced by the second harmonic of
bubble oscillations. The surrounding medium is assumed to be an incompressible viscous liquid and the
distance between the bubbles much larger than their radii. It is shown that the second-harmonic component of
the interaction force in many cases prevents the bubbles from coalescing, causing them either to repel each
other or to form a bound pair with some stable separation. This can occur providing the imposed field is strong
enough so that the second-harmonic force component is comparable to the “lifpeaduced by the linear
oscillations of the bubblesnteraction force. The obtained results are of interest in understanding collective
bubble phenomena in strong acoustic fields, such as cavitation streamer fori&io63-651X%99)11003-]

PACS numbes): 47.55.Bx, 47.55.Dz, 47.55.Kf, 43.2by

I. INTRODUCTION size. They neither coagulated nor broke down into individual
bubbles as long as the sound field was on. A very important
The secondary Bjerknes force is a well-known effect inpoint is that the sound field used[if] was rather weak: The
nonlinear acoustics. It is a time-averaged mutual interactiomatio of the driving pressure amplitude to the hydrostatic
force of two gas bubbles in an acoustically driven liquid. pressure did not exceed 0.03f [10], stronger fields were
This force constitutes an important component of manyapplied) This fact suggests that the observed clusters are not
acoustic phenomena and applications such as acoustic cadssociated with nonlinear bubble oscillations. The key to this
tation, ultrasonic degassing, multibubble sonoluminescencgyroblem was given by Zabolotskaya1]. She has shown
and medical ultrasonic§1-5]. It is named after C.A. that Eq.(1) fails because of ignoring radiation coupling of
Bjerknes and his son V.F.K. Bjerkng8], who were the first the two bubbles, i.e., the influence of the bubbles’ scattered
to investigate experimentally and theoretically this effect.fields on each other's pulsations. Allowing for this coupling

They derived the following expression for the force: yields a refined formula for the interaction force that pro-
vides an insight into the nature of the bubble clusters. Ac-
27| Al2w?R;0Rz0 cording to that formula, two bubbles, when approaching each
B 1) other, behave as if their resonance frequencigsand w,

pLA(wf— ) (03— w?) were increased. Therefore, if both bubbles are driven above
resonance and orier both of their resonance frequencies is
whereA is the complex pressure amplitude of the incidentclose enough taw, the interaction force may change from
acoustic field,w is the angular driving frequency’;o and  attraction to repulsion as the bubbles are coming closer to
Ry are the equilibrium radii of the bubbleg,is the equilib-  each other. This result was confirm@hd extendedater by
rium density of the liquid,L is the distance between the more accurate calculations allowing for multiple scattering
equilibrium centers of the bubbles, andw, are the mono- of sound between the bubbles and their shape oscillations
pole resonance frequencies of the bubbleg>0 corre- [12]. An extensive numerical investigation of the relative
sponds to the mutual attraction of the bubbles, Bgek0 to  motion of two bubbles in stronger sound fielggth relative
the mutual repulsion. It is seen from E() that the repul-  driving pressure amplitudes of 0.2—pl#as been conducted
sion occurs whetw lies betweenw; andw,. Otherwise the in [13]. It revealed that the mechanism proposed by Zabo-
bubbles are attracted to each other. The Bjerknes theory Istskaya works in such fields, too, which is confirmed by the
based on the following assumptioris: The surrounding me- experiments reported i0].
dium is an ideal incompressible fluidij) the gas within the When the wavelength of sound is comparable to separa-
bubbles obeys the adiabatic latii) R,9,R,;<L so that the tion distances between bubbles, the compressibility of the
shape deviations of the bubbles from sphericity and the scasurrounding liquid is no longer negligible. Its effect on the
tered waves of higher order than the primary ones can besecondary Bjerknes force has been examinefd#, keep-
neglected{iv) |A| is small enough so that the bubbles oscil-ing up all the other limitations of the Bjerknes theory. It has
late linearly with the driving frequency alone. When thesebeen found that the compressibility of the liquid gives rise to
conditions are met, the Bjerknes theory is in agreement witthong-range terms in the interaction force that are inversely
experimentg7,8]. If, however, this is not the case, then cer- proportional toL instead ofL2. Those terms can make the
tain effects are observed that cannot be explained by usingvo bubbles form a stable bound pair with a spacing of the
Eqg. (1). One such effect is the formation of stable bubbleorder of the wavelength of sound. This prediction has not
clusters that were first reported by Kobeletv al. [9] and  been borne out by experiment yet.
observed more recently by Marsten al. [10]. The clusters Bubbles are able to form stable structures not only in the
consisted of several bubbles noticeably larger than resonancases considered above. It is well known from experiments
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that in strong acoustic fields they group themselves into g , P Rio 3 20 4R, 1d . ,
branched filamentary structures named “acoustic streamers” R;R; + le— R + “R. + R +E d_(Rsz)
[15]. These are formed mainly from bubbles smaller than p 1 ! 1 t
resonance size, although according to the Bjerknes and Py1—Po— P
Zabolotskaya theories bubbles of this sort should always =, 2
coalesce. Oguz and Prospergttb] have investigated nu- P
merically the interaction of two bubbles, maintaining all the .

i : : 3 R\ 20 4vR, 1d
restrictions of the Bjerknes theory but assuming that the g i | “R2_ @( j’) i 2+——(R R?)

. . . 22 2 1M1
bubbles oscillate slightly nonlinearly. They have found that 2 R> PR, R, Ldt
nonlinear effects can change the sign of the interaction force o
with respect to the predictions of E@l). In particular, re- = M, (3)
pulsion may also appear even if both of the bubbles are p

driven below their fundamental resonance frequencies. It was . . .
observed that the repulsive force emergeddf Ry between whereR;(t) is the instantaneous radius of the bubble

w; andw, and the forcing was high enough, on the order ofl_:bl_’z)’ the dot deno?es_éhe tg]neb dbebrlivatiyeohis thle equ_i-
0.5 bar at a static pressure of 1 bar. For lower driving pres-I fium gas pressure inside theh bubble,y .'St €po ytreplc
ponent of the gasr is the surface tension; is the kine-

sures and other relations between the frequencies, the effekPONe! . o ) o
disappeared. Oguz and Prosperetti conjectured that it w. at_"t:hv'bscssl'ty of_thtehllqu;dtpvj is the VaPO:hDFGi‘:SSl{(Fje inside
caused by a strong component at twice the driving frequenc§'€ ith bubble,p, is the static pressure in the liquid, apd
developing in bubble pulsations due to the strong forcing:S t_lk_1e d”\l”n? ?cotl,rllstle ptresstl're. . o th g
Mettin et al. [17] have examined even stronger sound fields, 0 calculate et IrI]Eeé?)C |03(3;)rche lljgb 0 Ie ;;ee?hn .
with driving pressure amplitudes exceeding 1 bar. They al!'&/monic coer?hnen ’ qd han S (;u th'e S0 veE \év'
lowed for radiation coupling of two bubbles but assumed thaf?ccuracy up to the second harmonic. For this purpB)
the bubbles were far enough apart and therefore remaindg "ePresented as
spherical at all times. The resonance frequencies of both = 4D (2)
bubbles were chosen to be well above the driving frequency. Ri(O=Rjot X" (@) +x7(201), @
It was found that for some bubble pairs a mutual approac'i‘vherex(l)(wt) is the linear change of thith bubble’s ra-
changed the interaction force from attraction to repulsiondiUS pchJportionaI to the driving pressure amplituieand
resulting in a stable separation dietance. Obv?ouslnge XJ(Z)(Zwt) is the second-order change proportional|£92
and o, were far above @, a physical mechanism of this and involving a time-varyingwith twice the driving fre-
process is other than that proposedif]. It has been shown uency term and a time-constant term:
that the changeover of the force in this case is likely to be’ '
associated with a nonlinear resonancelike response of (2) _2(2) 2

L . . o Xi“(2wt) =X (2wt) + X . 5
bubbles, occurring in very strong sound fields if the equilib- - (2o =x" (20t X ®
rium bubble radius is largefbut not much than a certain

value (dynamical Blake thresholfl18]) which is typically A. Linear equations

equal to a few microns. __ To find x{(wt), we substitute Eq(4) into Egs.(2) and
From the above overview it can be seen that the phy5|ca(l3) and retain only the linear terms:

mechanisms responsible for the bubble clusters in weak

acoustic fields are clear enough while the nature of the . . 5 R%o . P,

bubble structures occurring in medium- and high-intensity X{P+ o 8yx{P + w1X(11)+R LX(zl):— R’ (6)

fields strongly calls for further investigation. This paper 10 P10

seeks to gain some insight into how the radiation interbubble R2 D

forces are affected by nonlinear oscillations. To this end, in X+ 08X+ X+ —oxV=— - (7)

Sec. | an expression is derived for the Bjerknes force be- Raol PR20

ere o; and g; are, respectively, the monopole resonance
requency and the dimensionless viscous damping constant
of the jth bubble, given by

tween two bubbles, including the component produced b
the second harmonic of the bubble oscillations. The obtaine%<
equations are then discussed in Sec. Il

Il. THEORY _1(3ypjp 20 |7
0= p R , (8)
Let two gas bubbles be in a liquid driven by a sound wave 10 10
field. Suppose that the wavelength of sound is much larger 4y
than the distancé between the bubbles and thats large Si=—5. (9)
compared with the equilibrium radiR;; and R,, of the R,

bubbles. Then both the compressibility of the liquid and the ) _ )
shape deviations of the bubbles from sphericity can be neSolutions to Eqs(6) and(7) are more conveniently sought in
glected. The viscosity of the liquid is taken into account butthe complex form. The real quantitigs andx{"(wt) can be
acoustic streaming around the bubbles is assumed to be negpresented as

ligible. Under these conditions, equations of the radial pul- ” @

sations of two interacting bubbles are given[iy] pi=Im(P)) and x”(wt)=Im(X;™), (10
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where Im denotes “the imaginary part of” and the complex

quantitiesP; andX{") are given by
P =A expiwt), (11
X{V=A exgliot). (12)

Substitution of Eqs(11) and(12) into Egs.(6) and(7) yields

R
£w2§2A(l): -

2 25,2 (1)
W]~ o t+iwd)AT’ — 13
(wf DAY - gl otbA = - o, (1)
(02— w2128 A — S02e A=~ A1y
2 R pR2o’
whereg;= R5 o/L. Solving these equations for the unknowns
A andASY| one obtains
AP =— 0+ wi—w?+iw?s,), (15
= R g (b0t 0} ), (19
AL = — 0%+ 0’ — 0’ +iw?s , 16
=~ Rop; (Bt ol D, (18
where
Dlz(a)i—wz-l-iwzﬁl)(a)g—wz-i-iw252)—§1§2w4.

(17)
B. Equations for x® (2et)

Substituting Eq.(4) into Egs.(2) and (3) and retaining
only the second-order terms, one has

R>q
X+ w8 x? + wix? e §2x2

1 . . 3.
= —Jﬂﬁx&”)% w X XY = xR — S(x)?

Ry
_25 dt(x(l)x(l)) (18)
X2+ 0 8,xP) + X2+ 1°§1'>'<(12)
Roo
11,2 (1)y2 (1)5(1) _ (1)3(1) 3 o (1)y2
= —— Q5(X57) F+ w X5 /X5 — X5 /X5 — =(X5 )
R, 2
d (1),(1)
_Zflm(xl X17), (19
where
2 20
Of=—+ 57(37+1)Pjo—R—j0 - (20)

PRjo
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x<1>(wt)— (x<1>* XM (22)

[see Egs(10); the asterisk denotes the complex conjufjate
and

X2 (2wt)=Im(X{?), (22)
one finds from Eqgs(18) and(19)
202 — @2
X2 =—— A2, (23
4Rj0wj
x<2>+w51x<2>+w2x<2>+ g X2
2R ix(l)x(l)_F (X(l))Z (Xgl))Z
—wd x<l>x<1>+2g (x<1>x<1>) . (29
0 (2) ((2) @ R, ¢
X2+ 08X + waXy +R §Xl
20
_ U s @ 3 @z 02y @y
~ 2Ry X3X5 +§(X2 )==Q35(X357)
— 08X <1>+2§ (x<1>x<1>) (25)

Equation(23) gives the constant term af?(2wt). It is not
required for calculating the interaction force and presented
here only for completeness of exposition. The other two
equations are complex equations for the time-varying term of
x{?(2wt). Upon substitution of

XJ(Z):A(Z)

exp(2i wt), (26)

they yield

(03— 4w?+2iw?6;) AP —

i
- 2R1J

+4w2§2<A<21>>2},

5
QZ+2w2+|w

) (Ag_J'))Z
(27)

4R ow?
(03— 4w+ 2i 025 AP — Rl—;glAf)

i
- ZRZJ

+40% (A)?

5
PR )(A<21>)2

(28)

Let us again take advantage of the complex representatio&olving Eqs.(27) and (28) for the unknowngq(z) andA(Z)

Writing the real quantities{"(wt) andx{”)(2wt) as

one obtains
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2 i 2.5 ., ) ) Substituting these equations into E§4) and using Egqs12)
AP = - 2RiD, (91+ 0 100 [(0;— 40 and (26), one finally obtains
+2i 28,) (AD)? Fi=(F{"+FP)ep,, (37)
3 where
+4w2§2 w%-i—Qg—§w2+3iw252)(A(21>)2},
FiV=2mpw?RigRpoé1é, REAAT*AY),  (39)
(29)
i 5 FiY=2mpo’ €16, REAR R AL+ (AL H(AF)?
(2)_ _ 2,7 2,5 2 2_ 2 . .
A5 ZRzoDz[ Q5+ 5 +tiw 52)(w1 4o +2|R10A(12>(A(21)*)2+2|R20A(22)(A(11)*)2]. (39)
+2i028))(AY)2+ 4w2E, Equations(38) and(39) are, respectively, the “linear’(pro-
duced by the linear oscillatiohsand the second-harmonic
> wf-l—Qi—§w2+3iw261)(A(11))2}, (30) components of the radiation interaction force acting on
2 bubble 1.
where lll. DISCUSSION
— 2_ 2 P2 2_ 2 P2
Do= (01~ 40"+ 2i0°6))(w;— 40"+ 21 0°5,) Substituting Eqs(15) and (16) for A{Y and A{Y, one
—160%¢,6,. (31)  Obtains the “linear” component, Eq(38), in an explicit
form:
So, Egs.(4), (5), (10), (12), (15)—(17), (22), (23), (26),
and (29—(31) give us the instantaneous radii of the two in-  _ |/ 27| Al?w?R;0Ry0
teracting bubbles up to the second harmonic. We can now "1~ pL2D, |2

proceed to calculate the interaction force itself.
X [(§lw2+ w%— wz)(52w2+ wg— 0?)+ 0*8,6,].
C. Interaction force (40)

Since the interaction force on one bubble is equal and o _ _ _
opposite to that on the other bubble, it is sufficient to calcu-The similar equation was first obtained by Zabolotskaya

late one of them, say, the force on bubble 1. This is given by11]. It improves the Bjerknes formula, E(L), by allowing
[17] for the dissipation of energy and radiation coupling of the

bubbles. It is seen from Ed40) that due to the radiation
Fi=—(v1Vpo), (32)  coupling between the bubbles the “linear” force can change
) 3m ) its sign as the bubbles approach each other and the change
where( ) denotes the time average;=47R;/3 is the in-  comes about in such a manner as if their resonance frequen-
stantaneous volume of bubble 1, aR, is the pressure cjes were increased with reducing the separation distance. As
gradient generated by bubble 2 at the equilibrium center ohas already been mentioned in the Introduction, this explains

bubble 1, given by the way bubbles driven above resonance form stable clusters
p d in weak acoustic fieldg9,10,13.
szzp d—(Rng)elz, (33 However, our prime interest here is the second-harmonic
t component of the interaction force. Substitution of EG$),

in which ey, is the unit vector directed from the equilibrium (16), (29), and(30) into Eq. (39) yields

center of bubble 1 to that of bubble 2. Setting=Im(V,) 2| Al4w?
and p,=Im(P,), whereV,; and P, are the respective com- Fl2= 5 . ZRe{Tngele;HlH;},
plex volume and pressure, E@2) can be rewritten as p°RygR20L % D1|*| Dyl :
41)
Fi=—3Re(VIVP,), 34
1=~ 2Re(V1VP,) (34) where
where Re denotes “the real part of” ar}?dl is the time- 2 2 2 2an2
varying part ofV;. With accuracy up to the second-order Ti= (o~ o™+ o a6, (42)
terms,V; and VP, are given by G, =w12+9j2— gw2_3iw25j ’ (43)
Y (1) (2) _i (x(1y2
V1=27mRyd 2RyoXy+ 2Ry Xy =1 (X)), (39) Hj=wj2—4w2+4w28j§j+2iw25j, (44)
PRy d : : . :
VPa="5 a(RzoX(zl)+ RooX5” —iX5"X5" e B ( R3j0)2T3JG}k _ (45
(36) Rio | TjG3,
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Allowing for dissipation makes the analysis of Hg1) too difficult. To avoid numerical computations and yet to reveal the
main features of the second-harmonic force component, we wilbset,= 0. As a result, Eq(41) is simplified to

27T|A|2(1)2((1)§_ (,()2+ §lw2)2(w§— (l)2+ 52(1)2)2M 1M 2N1N2

F(12):32 2_ 24, 2 2.4, 2 22, 2 22" (46)
p°L°RigRo(w]— 0) (w5~ w) (] —4w”) (w5~ 4w?)
|
where both) of their resonance frequencies is close enoughdo 2
This effect suggests one of the possible physical mechanisms
) that give rise to stable structurésich as acoustic streamers
Mj:wj—4w2+4w2bj§j, (47)

formed by “small” bubbles in strong fields.

Consider the next example. Assume that one of the
3 bubbles(say, bubble Lis big so thatw?+ Q5<1.502, while
Ni=w’+0°— = w? (48)  the second bubble is small so thaj>w. For this case the

P2 “linear” force F{¥ is repulsive.M;,N;<ON,>0, and the
sign of M, is determined by the ratio between and 2w. If
R2 (w2 0?)N, w,< 20, thenM2<0(gn'd henceé{?) hinders coalescence as
= — 2 by=1b,. (49)  well. For w,>2w, F{?) is an attractive force counteracting
Rig( w1~ 0%)°N; F{Y. Note also that in the case considetedb,<0. This

means that fomw, close to 2v, the sign ofF (%) varies in such

It is seen that the sign &t{?), which is of special interestto & W& @S if the resonance frequency of bubble 2 were low-
us, is determined by the factokd;, M, Ny, andN,. ered with decregsmg. I?z)partmular, ifw, is slightly bglow

Let us first consider the case where both bubbles aré® then the sign ofF;” may change from repulsion to
driven below the main resonance € w;,®,), the case of attraction as the bubbles are moving apart. As a reBif,
“small bubbles.” For such bubeeNl,N2>O as (> wj will begin to counteract the repulsion caused By’. This
[cf. Egs.(8) and(20)] and henceu +Q >1.50°. The S|gn may lead to a stable separation between the bubbles if, of
of MM, depends on the relatlon betwee@ wy, and 2w. course, the imposed field is strong enough.
If 2w Iies betweenv; andw,, thenF{? is a repulsive force Consider one more example. Let both bubbles be driven
which counteracts the attractive “linear” force. As a result, above the main resonance{,w,<w) provided thatN,
for high enough driving pressures the total force can become:0 andN,> 0. It is easy to see that in this cas§" andF{?
repulsive as well and thus prevent the bubbles from coalesagain counteract each otheF!{’>0,F{?’<0). Hence the
ing. Equation(46) also shows that the sign Gf(z) depends sign of the total force depends on their relative magnitudes.
on the distancé between the bubbles. In the case consid- So far we have neglected the dissipation terms, assuming
ered, it varies in such a way as if the monopole resonancthem to be small. Even so, however, they can play a role if
frequencies of both bubbles increased adecreases. It fol- the bubbles are near resonances. To estimate it, consider the
lows that, even if both resonance frequencies are initiallymost interesting case whetg, and w, are close to & so
below 2w, the forceF{?) can change from attraction to re- that o/ —4w?=w?; with €;<1. For this case, Eq(41)
pulsion as the bubbles approach each other providedame gives

| Al4(5+ 202/ 0?)(5+ 205 0?)[ (€1 +4B1£;) (€, 4Byé,) +45152]

F2)
! 16203 w8R, RogL 2( €2+ 462) (€2+462)

(50

As is seen from Eq(50), dissipation increases the mismatch between the natural frequencies of the bubbles nefetfédofor
be a repulsive force.

We can also use E@50) in order to estimate the threshold pressure at Wﬁ&ﬁ”\ becomes comparable Efll) since it is
reasonable to assume that #9y and w, close to 2v this threshold is minimum. By comparing E¢O) with Eqg. (40), one
finds

(€+46%)(E+452) 2

(54202 0?)(5+ 2Q5/ 0?)|(€1+4B1£1)(€,+ 4BoE,) + 46,65

|Alih=6pw?RiRa9 (51)
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As an example, let us consider two air bubbles in waterjntricate. As a consequence, bubble coalescence is by no
borrowing data fron{16]: R;;=0.1 mm, R,;=0.09 mm,L means the most probable event, which is just confirmed by
=5 mm, w=0.51w; (f=w/27~16.8 kHz), and p, experimentg15]. Of course, the results of the present study
=1 bar. For such bubbles, the main contribution to dampingare of qualitative rather than quantitative concern since they
comes from heat and radiation losses. Therefore, it is reasome based on the assumption of weak field. Nevertheless,
able to substitute for the viscous damping constaiitand  they give somdinitial) insight as to how nonlinear oscilla-
8, in Eq. (51) the total damping constants allowing for all tions influence the radiation interbubble forces. From this
three kinds of losses. In this case, E®1) gives |A|y,  standpoint, the present results are of immediate interest in
~0.31 bar. This value is quite close to 0.5 bar obtained irunderstanding collective bubble phenomena in strong acous-
[16] on the basis of a differethumerical approach for the tic fields such as cavitation streamers, ultrasonic degassing,
same parameters. However, it should not be expected thawultibubble sonoluminescence, etc. They can also be helpful
Eqg.(51) will be in good agreement with experimental values, in the interpretation of more quantitatively correct numerical
as the present theory is based upon the assumption of we&&sults.
field such thafx{?|<|x{")|<R;o. For this reason, the most
that can'be anticipated from E(R1) is apparently the order ACKNOWLEDGMENT
of magnitude of the threshold pressure.
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